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INTRODUCTION

Entanglement entropy in extended quantum systems

The quantum description of nature is very peculiar. In the conventional understanding, it asserts
that there is a fundamental uncertainty in what we measure which we can never overcome; it
also correctly predicts a wealth of phenomena that seem to disagree with classical mechanics,
like interference of particles and quantisation of energy levels. However, it is arguably
the phenomenon of entanglement that is the most fundamental and potentially disturbing
characteristic distinguishing the quantum from the classical worlds. It was one of the first
aspects of quantum physics to be studied and discussed (see the classics by Einstein, Podolsky
and Rosen [1] and by Schrödinger [2], both dating back to 1935), and there are many ways of
defining it. We could describe it as follows: it implies that the measurement of an observable
of a subsystem may affect drastically and instantaneously (according to the conventional
Copenhagen interpretation) the possible outcome of a measurement on another part of the
system, no matter how far apart it is spatially. This is to be distinguished from the phenomenon
of classical correlation, where the distribution of the possible outcomes of a measurement on
one part of the system may depend on the outcome of a previous measurement elsewhere, but
is strictly limited by the speed of propagation of signals.

Quantum entanglement apparently leads to ‘spooky’ connections between subsystems
that may be arbitrarily far apart in space. It is entanglement that forbids an explanation
of the quantum randomness via hidden variables (Bell’s inequalities [3]), that allows some
quantum algorithms to be much more efficient than their best classical counterparts (e.g.
Shor’s algorithm [4]), and that allows the possibility of quantum teleportation.

In the last 30 years, interest in quantum entanglement has risen sharply in various formerly
disconnected scientific communities, bringing them together in unexpected ways. In the early
1980s, the entanglement between quantum states with support both inside and outside of a black
hole, arising for instance from particle pair creation near the event horizon, was suggested to be
the basis for the properties of Hawking’s radiation, in particular for the associated Beckenstein–
Hawking entropy. Technically, the idea is that in a pure, bi-partite state, an observer who can
only measure one subsystem (e.g. outside the black hole) will perceive an effective mixed
quantum state if there is entanglement with the rest of the system (e.g. inside the black hole).
The corresponding entropy is the von Neumann entropy associated with the reduced density
matrix – this is the entanglement entropy of a quantum subsystem. Although this idea does
not provide the full explanation, it is nevertheless true that, like the Beckenstein–Hawking
entropy, entanglement entropy, in many situations, grows like the area of the region separating
the subsystems (in fact, it is certain quantum corrections to the black hole entropy that are
given by the entanglement entropy). The idea that entanglement between subsystems of a pure
state gives rise to effective mixed states is also used in the decoherence theory of quantum
measurements.

Later on, in the 1990s, the necessity of providing a quantitative measure of entanglement
was understood in the science of quantum information, since, in this context, entanglement is an
important resource. Although it is rather straightforward to determine whether entanglement
between two subsystems exists, how do we quantify it? There are in fact many measures of
entanglement that find applications in different situations. But an important principle is that
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of an ordering with respect to operations that ‘naturally’ cannot increase entanglement. Local
unitary operations (unitary transformations completely lying in the subspace corresponding to
one subsystem) are not expected to change entanglement between subsystems, and classical
communications are expected at best to decrease it. Hence, if the fact that a state can be
obtained from another via local operations and classical communication (LOCC) provides an
ordering in the space of states, then any real function of these states respecting this will give rise
to a useful entanglement measure. One of the most important results in quantum information
science [5] is that there is indeed such an ordering in the space of pure states, and that the
entanglement entropy (or any monotonic function of it) is a candidate for the corresponding
measure: it cannot increase under LOCC. For mixed states, the situation is more complicated,
but a recent proposed solution to the problem can be found in [6].

The study of black holes naturally led to the more general consideration of entanglement
entropy in quantum field theory (QFT), and that of quantum information to the corresponding
measure in spin chains. Since these two subjects naturally overlap in the context of many-body
systems (in particular close to criticality, see below), it soon became apparent that there was a
rich structure to be uncovered by studying entanglement entropy in this context, and by putting
together ideas from field theory and quantum information science. This is the subject of the
present volume, which groups together reviews by leading experts in the field of entanglement
entropy and related notions in many-body, extended, quantum systems.

Many-body problems are notoriously difficult to handle. In extended quantum systems, a
macroscopically large number of degrees of freedom interact in a local way. For our purposes,
this means that the degrees of freedom can be seen as lying in R

d , in such a way that the whole
system is extended over distances much larger than the interaction range (the dimensionality
of the system is the lowest possible d where this is possible). Locality helps in many ways
in understanding such systems. For instance, when they present critical behaviour, where
correlation lengths become large, the powerful techniques of QFT give access to universal
properties in the neighbourhoods of critical points. Ideas of entanglement then provide a fresh
point of view on extended quantum systems and QFT.

The reasons for the success entanglement entropy study are numerous. Its simple
definition, compared to other entanglement measures, makes it amenable to study in extended
quantum systems, in particular via the ‘replica trick’. Also, the entanglement entropy displays
universal behaviour near critical points, and provides a good characterisation of universal
aspects of quantum states. It extracts fundamental properties of critical neighbourhoods in a
‘cleaner’ way than most standard quantities, like quantum correlation functions: the central
charge (without the need for knowing a priori the speed of sound), the mass spectrum (in a
functional form independent of the scattering matrix), the boundary entropy, the topological
charge, and so on. Moreover, it is easy to argue that it measures quantum correlations in a
more universal, canonical and flexible way than do correlation functions themselves. Indeed,
there is no need for the precise characterisation of any local observable; and we only have
to provide a partition of a complete set of compatible observables in order to determine the
division into subsystems and calculate the entanglement entropy. This means that we don’t
have to know the properties (like scaling dimensions) and correlations of any particular local
observable; and that we can in fact choose to partition the Hilbert space according to different
observables than local ones (for instance, particle partitioning).

Entanglement entropy has a very natural definition. Consider an arbitrary quantum system
prepared in a pure state |�〉 (assumed to be normalised to unity), so that it has the density
matrix ρ = |�〉〈�|. We suppose that the Hilbert space can be written as a tensor product
H = HA⊗HB . We imagine two observers (traditionally named Alice and Bob) such that Alice
can make observations only in HA (corresponding to observables of the form OA ⊗ 1B), and
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correspondingly for Bob. In general, Alice’s observations are entangled with those of Bob. One
of the most useful mathematical tools in understanding how to quantify entanglement is that of
the Schmidt decomposition, which is based on the property of singular value decomposition
for matrices. It states that any pure state |�〉 may be written as

|�〉 =
∑

j

cj |ψj 〉A ⊗ |ψj 〉B ,

where |ψj 〉A,B are orthonormal vectors in HA and HB , respectively (note that there is only one
sum here: for each vector in HA there is just one vector in HB). If all the states are normalised
to unity,

∑
j |cj |2 = 1. Moreover, the cj s can be chosen to be real and � 0. The measure of

the entanglement between A and B in |�〉 that we then consider is the entropy

S ≡ −
∑

j

|cj |2 log |cj |2 .

If c1 = 1 and all the rest vanish, |�〉 is a product state and is unentangled (although there
may still be correlations). If, on the other hand, all the cj s are equal, then S takes its maximal
value, given by the logarithm of the smaller of the dimensions of HA and HB . For example, if
each subspace is a tensor product of N qubits (spin- 1

2 degrees of freedom) then the maximal
entanglement entropy is N log 2. (We note that in the quantum information literature it is
customary to take all logarithms to base 2. However, the use of the replica trick naturally leads
to base e.)

Equivalently, we can define the entanglement entropy as the von Neumann entropy

SA = −TrHA
ρA log ρA

of Alice’s reduced density matrix
ρA = TrHB

ρ.

Clearly, SA = SB = S when ρ corresponds to a pure state, while in general SA �= SB for a
mixed one. This definition makes it obvious that the entanglement entropy is basis independent:
it is a fundamental universal feature. Another property that makes SA interesting in extended
systems is sub-additivity: if the Hilbert space is the tensor product of a set of ‘local’ degrees
of freedom, then given two subsets A1 and A2 (where A1 ∪ A2 is not necessarily the whole
set), the entanglement entropy in any pure state satisfies the inequality

SA1 + SA2 � SA1∪A2 + SA1∩A2 .

There is a completely elementary way of understanding basic properties of reduced density
matrices for pure states, using the anti-linear maps f : HA → HB given by f |ψ〉A = A〈ψ |�〉,
and f̃ : HB → HA given by f̃ |ψ〉B = B〈ψ |�〉 (the Schmidt decomposition is essentially
the singular value decomposition for such maps). With these, we can write ρA = f̃ f and
ρB = f f̃ . This makes it evident, for instance, that ρA and ρB have the same set of non-zero
eigenvalues, with the same degeneracies, giving in particular SA = SB .

Apart from the enormous theoretical interest in understanding of the entanglement in
extended systems, in the context of quantum field theory, entanglement entropy turns out to
have a deep geometrical meaning. Through the replica trick, which stems from the simple
identity

−TrHA
ρA log ρA = −

(
d

dn
TrHA

ρn
A

)

n=1

,

3



J. Phys. A: Math. Theor. 42 (2009) 500301 Introduction

the entanglement entropy is related to partition functions of the n-independent-copy model
orbifolded by elements of the Zn group. In 1+1 dimensions, these are partition functions on
multi-sheeted presentations of Riemann surfaces. Such partition functions, for instance, have
connections to τ -functions (isomonodromic or from integable hierarchies) both in conformal
cases and in massive free models, although some work is still needed to completely clarify
the situation. On a different vein, by the holographic principle, entanglement entropy can
be associated to geometric objects in gravity theories, like areas of certain minimal surfaces
in anti-de Sitter space. In this sense, it has helped in understanding further the holographic
principle.

The study of entanglement entropy has also had a great impact on numerical algorithms and
on their development. In fact, in any algorithm running on a classical computer the quantum
features are encoded in so-called tensor states and in their connections. In matrix product
states (MPSs) – that are the basis of the celebrated density matrix renormalization group –
the amount of entanglement entropy that can be ‘stored’ in a matrix of dimension M scales
like log M . Thus, to have an accurate description of a given quantum state, the dimension of
the tensor should be proportional to the exponential of the maximum entanglement entropy of
any subsystem. In one dimension this implies that M scales at most linearly with the system
sizes, but in higher dimensions, the area law requires an exponentially growing computational
resource. This explains the success of the density matrix renormalization group in 1D and its
failure in higher dimensions. However, this is not yet the end of the story. The understanding
of entanglement in extended systems has allowed the design of new classes of tensor states (e.g.
tree tensor states, multiscale entanglement renormalization Ansatz, and Projected Entangled
Pair States, etc.), with a structure that is specifically organized in such a way as to store
the desired amount of entanglement in a relatively small matrix, hence to require at most
polynomial resources to store and manipulate quantum states on a classical computer.

This characterisation has also helped dramatically in understanding non-equilibrium
situations. In fact, nowadays it is well understood that in generic non-equilibrium dynamics
under quantum evolution, the entanglement entropy grows with time up to a maximum scaling
with subsystem size (with important exceptions, such as local quantum quenches). This implies
that no matter how small the perturbation is, the long-time evolution can be obtained only for
relatively small subsystem sizes with MPSs. Conversely, the short-time dynamics is effectively
described by MPSs. These features have boosted the research to find tensor states for non-
equilibrium dynamics.

The goal of this issue is to present a self-contained introduction to most of the topics
that gravitate around entanglement entropy in extended quantum systems, with the hope of
being complementary to the already existing ones: the review by Amico, Fazio, Osterloh and
Vedral [7], discussing the zero and finite temperature properties of bipartite and multipartite
entanglement in interacting spin, fermionic and bosonic model systems; and the one by Eisert,
Cramer and Plenio [8], considering the area law. Both these topics will only be marginally
discussed here, referring the reader to the two above-mentioned reviews. This issue consists
of three main blocks. The first four reviews are introductory to the subject, the second block of
four describes the quantum field theory approach to entanglement, while the last four reviews
consider four specific topics of large interest for condensed matter physics. In detail, the
content of this issue is as follows:

• Amico and Fazio [9] open this issue with a review about the various measures of
entanglement in extended systems, with particular emphasis on the connection with
magnetic order and criticality.

• Latorre and Riera [10] introduce the concept of entanglement entropy by considering in
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detail the simplest quantum spin systems, giving an overview of results and methods.
• Peschel and Eisler [11] review the properties of reduced density matrices for free fermionic

or bosonic many-particle systems in their ground state and in situations out of equilibrium.
• Cirac and Verstraete [12] discuss the different descriptions of many-body quantum systems

in terms of tensor product states and their applications to numerical algorithms.
• Calabrese and Cardy [13] review the conformal field theory approach to the entanglement

entropy for the ground state of critical systems and for out-of-equilibrium situations.
• Castro-Alvaredo and Doyon [14] consider the case of massive one-dimensional quantum

field theories within the form-factor approach for integrable models and more generally
for massive quantum field theory.

• Casini and Huerta [15] introduce general methods to calculate the entanglement entropy
for free fields, within the Euclidean and the real time formalisms in any dimensionality.

• Nishioka, Takayanagi, and Ryu [16] review recent progresses on the holographic
understandings of entanglement entropy in the context of the AdS/CFT correspondence.

• Affleck, Laflorencie, and Sorensen [17] consider a number of situations where a quantum
impurity or a physical boundary has an interesting effect on entanglement entropy.

• Refael and Moore [18] discuss the entanglement entropy in systems with quenched
randomness, concentrating on universal behavior at strongly random quantum critical
points.

• Fradkin [19] considers the case of topological order in two dimensions, especially in
models with a conformal invariant wave function, having applications to quantum dimer
models and fractional quantum Hall states.

• Finally, Haque, Zozulya, and Schoutens [20] consider a different bipartition of the quantum
states, when the subsystem consist of a given number of itinerant particles and not of a
spatial subset.

Many interesting topics connected with entanglement entropy in extended systems are
unfortunately not present in this issue. We apologise for these omissions and for the personal
choice of topics included, and realise that this cannot satisfy all scientists working in the field.
However, we hope that this issue can serve as a useful introduction to newcomers in the field,
and as a convenient and complete enough reference for the experts.

Pasquale Calabrese, Dipartimento di Fisica dell’Universitá di Pisa and INFN, Italy
John Cardy, Rudolf Peierls Centre for Theoretical Physics, Oxford University and
All Souls College, UK
Benjamin Doyon, Department of Mathematics, King’s College London, UK
(work done while at: Department of Mathematical Sciences, Durham University, UK)
Guest Editors
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